DYS-Net
Bases: Module
, ABC
Abstract implementation of a Davis-Yin Splitting (DYS) layer in a neural network.
Note
The singular value decomposition of the matrix \(\mathsf{A}\) is used for the projection onto the subspace of all \(\mathsf{x}\) such that \(\mathsf{Ax=b}\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
A
|
tensor
|
Matrix for linear system |
required |
b
|
tensor
|
Measurement vector for linear system |
required |
device
|
string
|
Device on which to perform computations |
'mps'
|
alpha
|
float
|
Step size for DYS updates |
0.05
|
Source code in src/dys_opt_net.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
F(z, w)
abstractmethod
Gradient of objective function. Must be defined for each problem type.
Note
The parameters of \(\mathsf{F}\) are stored in \(\mathsf{w}\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z
|
tensor
|
point in Euclidean space |
required |
w
|
tensor
|
Parameters defining objective function. |
required |
Returns:
Name | Type | Description |
---|---|---|
Fz |
tensor
|
Gradient of objective function at \(\mathsf{z}\) |
Source code in src/dys_opt_net.py
forward(d, eps=0.01, max_depth=int(10000.0), depth_warning=True)
Forward propagation of DYS-net.
Note
A switch is included for using different behaviour at test/deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
tensor
|
Contextual data |
required |
max_depth
|
int
|
Maximum number of DYS updates |
int(10000.0)
|
depth_warning
|
bool
|
Boolean for whether to print warning message when max depth reached |
True
|
Returns:
Name | Type | Description |
---|---|---|
z |
tensor
|
P+O Inference |
Source code in src/dys_opt_net.py
test_time_forward(d)
abstractmethod
Specify test time behaviour, e.g. use a combinatorial solver on the forward pass.
Args: d (tensor): Contextual data
Returns: x (tensor): inference/solution to parameterized optimization problem.