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Abstract

In many applications, a combinatorial problem must be repeatedly solved with similar, but
distinct parameters. Yet, the parameters w are not directly observed; only contextual data
d that correlates with w is available. It is tempting to use a neural network to predict w
given d , but training such a model requires reconciling the discrete nature of combinatorial
optimization with the gradient-based frameworks used to train neural networks. When the
problem in question is an Integer Linear Program (ILP), one approach to overcoming this issue
is to consider a continuous relaxation of the combinatorial problem. While existing methods
utilizing this approach have shown to be highly effective on small problems (10–100 variables),
they do not scale well to large problems. In this work, we draw on ideas from modern convex
optimization to design a network and training scheme which scales effortlessly to problems with
thousands of variables.1

1 Introduction

Many high-stakes decision problems in healthcare [54], logistics and scheduling [31, 45], and transportation [51]
can be viewed as a two step process. In the first step, one gathers as much as data as possible about the
situation at hand. This data is used to assign a value (or cost) to the outcomes arising from each possible action.
The second step is then to select the action yielding maximum value (alternatively, lowest cost). Mathematically,
this can be framed as an optimization problem with a data-dependent cost function:

x⋆(d) ≜ argmin
x∈X

f (x ; d), (1)

In this work, we focus on the case where X ⊂ Rn is a finite constraint set and f (x ; d) = w(d)⊤x is a linear
function. This class of problems is quite rich, containing the shortest path, traveling salesperson, and sequence
alignment problems, to name a few. Given f (•; d), solving (1) may be straightforward (e.g. shortest path) or
NP-hard (e.g. traveling salesperson problem [32]). However, our present interest is settings where the dependence
of f (•; •) on d is unknown and must be learned from data. We propose learning a mapping wΘ to approximate
the unknown objective: wΘ(d) ≈ w(d). The data d is observed and is called the context. As an illustrative
running example, consider the shortest path prediction problem shown in Figure 1, which is studied in [10, 41].

At first glance, it may appear gradient-based methods [15] are well-suited to tune the weights Θ. However, a
key obstacle for such approaches is “differentiating through” the solution

xΘ(d) ≜ argmin
x∈X

wΘ(d)
⊤x (2)

to obtain a gradient with which to update Θ. Specifically, the combinatorial nature of X may cause the solution
xΘ(d) to remain unchanged for many small perturbations to Θ; yet, for some perturbations xΘ(d) may “jump”
to a different point in X . Hence, the gradient dxΘ

/
dwΘ is always either zero or undefined [46]. To compute an

informative gradient, we follow recent works (e.g. [52]) and relax (2) to a quadratic program over the convex
hull of X by adding a small regularizer (see (12)).

1Code and additional documentation for this work are available online: fpo-dys.research.typal.academy

arXiv Preprint. July 25, 2023

https://fpo-dys.research.typal.academy


0 20 40 60 80

0

20

40

60

80

(a) Map

0 2 4 6 8 10

0

2

4

6

8

10

(b) Costs for Each Square

0 2 4 6 8 10

0

2

4

6

8

10

(c) Shortest Path

Figure 1: The shortest path prediction problem [41]. The goal is to find the shortest path (from top-left to
bottom-right) through a randomly generated terrain map from the Warcraft II tileset [28]. The contextual data
d , shown in (a), is an image sub-divided into 8-by-8 squares, each representing a vertex in a 12-by-12 grid graph.
The cost of traversing each square, i.e. w(d), is shown in (b), with darker shading representing lower cost. The
true shortest path is shown in (c).

Contribution Most prior works [10, 23, 35, 41, 52] focus on problems with fewer than one thousand variables.
Drawing upon recent advances in convex optimization [44] and implicit neural networks [26, 30], we propose
a method designed specifically for large-scale predict-and-optimize problems. Our approach is fast, easy to
implement using our provided code, and, unlike several prior works (e.g. see [10, 41]), runs completely on GPU.
Numerical examples herein demonstrate our approach, run using only standard computing resources, easily scales
to problems with tens of thousands of variables. Theoretically, we verify our approach computes an informative
gradient via a refined analysis of Jacobian-free Backpropagation (JFB) [26]. Along the way, we delineate two
variants of the predict-and-optimize problem based upon the type of training data available, and argue that the
distinction between these two variants ought to be treated with more care. In summary, we do the following.

▷ Building upon [29], we use Davis and Yin’s three operator splitting technique [21] to propose DYS-Net.

▷ We provide, for the first time, theoretical guarantees for differentiating through the fixed point of a
non-expansive, but not contractive, operator.

▷ We numerically show DYS-Net easily handles combinatorial problems with tens of thousands of variables.

2 The Predict-and-Optimize Paradigm

LP Reformulation In this work we focus on optimization problems of the form (1) where f (x ; d) = w(d)⊤x
and X is the integer or binary points of a polytope, which without loss of generality we assume to be expressed
in standard form [55]

X = C ∩ Zn or X = C ∩ {0, 1}n where C = {x ∈ Rn : Ax = b and x ≥ 0} . (3)

In other words, (1) is an Integer Linear Program (ILP). We follow [23, 35, 52] and others in replacing the model
(2) with its continuous relaxation, redefining

xΘ(d) ≜ argmin
x∈C

wΘ(d)
⊤x. (4)

as a step towards making the computation of dxΘ
/
dwΘ feasible, see [52] for further discussion. Henceforth, we

focus exclusively on this LP reformulation.

Losses and Training Data We aim to tune weights Θ such that xΘ(d) ≈ x⋆(d). Prior works [24, 50] suggest
gathering training data in the tuple form (d, w(d)) and then tuning weights to minimize the discrepancy2

2for example the least-square discrepancy ∥w(d)− wΘ(d)∥2
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between w(d) and wΘ(d); this is referred to as the two-stage approach [47]. However, small discrepancies in
the approximation wΘ(d) ≈ w(d) in areas crucial to the optimization problem (1) can yield wildly different
minimizers, leading to poor generalization [9].

A better approach is to consider a loss more in line with the task at hand, for example the regret incurred by
using xΘ(d) in lieu of the true optimal solution x⋆(d):

(Regret) = R(Θ; d, w) ≜ w(d)⊤xΘ(d)− w(d)⊤x⋆(d). (5)

As the second term is independent of weights Θ, it may be omitted from training with the regret loss

(Regret Loss) ≡ LR(Θ) ≜ Ed∼D [ℓR(Θ; d)] where ℓR(Θ; d) = w(d)⊤xΘ(d) (6)

and D is the distribution of contextual data. This loss is also called the Smart Predict-then-Optimize (SPO)
loss [23] or task loss [35]. Finding a model with low regret ensures the cost of the model output (i.e. w⊤x(d))
is close to the true optimal cost (i.e. w⊤x⋆(d)). In [23], a convex relaxation of regret is proposed, under the
name SPO+

(SPO+) ≡ LSPO+(Θ) ≜ Ed∼D

[
min
x∈C

{
(2wΘ(d)− w(d))⊤x

}
+ 2wΘ(d)

⊤x⋆(d)− w(d)⊤x⋆(d)
]
, (7)

which is notable for the amenable form of its subgradient. In some settings [10, 30, 41] w(d) is not accessible,
and only training data of the form (d, x⋆(d)) is available. For this variant of the Predict-and-Optimize problem,
an appropriate loss is one measuring the discrepancy between xΘ(d) and x⋆(d), for example

(Argmin Loss) ≡ LA(Θ) ≜ Ed∼D [ℓA(Θ; d)] , where ℓA(Θ; d) = ∥x⋆(d)− xΘ(d)∥2. (8)

A similar loss to LA is used in [41], differing by usage of the Hamming distance between x⋆(d) and x(d). In
principle we select the optimal weights by solving argminΘ L(Θ) where L = LR or L = LA. In practice, the
population risk is inaccessible, and so we minimize empirical risk instead [48]:

argmin
Θ

1

N

N∑
i=1

ℓ (Θ; di) , where ℓ = ℓR or ℓ = ℓA. (9)

Argmin Differentiation Omitting d from notation (for notational brevity), the gradient of regret is

d

dΘ
[ℓR(Θ)] =

d

dΘ

[
w⊤(xΘ − x⋆)

]
= w⊤

∂xΘ
∂wΘ

dwΘ
dΘ
, (10)

and, for ℓ2 error in model output,
d

dΘ
[ℓA(Θ)] =

d

dΘ

[
∥xΘ − x⋆∥2

]
= (xΘ − x⋆)⊤

∂xΘ
∂wΘ

dwΘ
dΘ
. (11)

As discussed in Section 1, x⋆ is piecewise constant as a function of w , and this remains true for the LP relaxation
(4). Consequently, for all wΘ, either ∂xΘ/∂Θ = 0 or ∂xΘ/∂Θ is undefined—neither case yields an informative
gradient. To remedy this, [35, 52] propose adding a small amount of regularization to the objective function in
(4) to make the objective function strongly convex. This ensures xΘ is a continuously differentiable function of
wΘ. Letting fΘ(x ; γ, d) ≜ wΘ(d)⊤x + γ∥x∥22, we follow [52] by adding a small quadratic regularizer, modulated
by γ ≥ 0, to henceforth replace (4) by

xΘ(d) ≜ argmin
x∈C

fΘ(x ; γ, d). (12)

A more principled regularizer (e.g. the logarithmic barrier function [35]) may be more effective, which we leave
to future work. During training, we aim to solve (12) and simultaneously compute the derivative ∂xΘ/∂Θ; this
problem is frequently referred to as argmin differentiation and received much attention lately [3, 4, 5, 6, 26].

3 Prior Work

The most common approach to computing ∂xΘ/∂Θ, proposed in [5] and used in [25, 35, 42, 52], starts with
the KKT conditions for constrained optimality:

∂fΘ
∂x
(xΘ) + A

⊤λ̂+ ν̂ = 0, Ax − b = 0, D(ν̂)xΘ = 0, (13)
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where λ̂ and ν̂ ≥ 0 are Lagrange multipliers associated to the optimal solution xΘ [12] and D(ν̂) is a matrix
with ν̂ along its diagonal. Differentiating these equations with respect to Θ and rearranging yields

∂2fΘ
∂x2 A I

A⊤ 0 0

D(ν̂) 0 D(xΘ)



dxΘ
dΘ

dλ̂
dΘ

dν̂
dΘ

 =

∂2fΘ
∂x∂Θ

0

0

 . (14)

The matrix and right hand side vector in (14) are computable, thus enabling one to solve for dxΘdΘ (as well as dλ̂dΘ
and dν̂

dΘ). The computational bottleneck in this approach is computing the Lagrange multipliers at optimality—i.e.
λ̂ and ν̂—in addition to xΘ. If x ∈ Rn and A ∈ Rm×n this can be done with a primal-dual interior point method
at a cost of O

(
max{n,m}3

)
[5]. In principle it is possible to exploit sparsity in A or ∂fΘ∂x (xΘ) to solve (14) faster,

but in practice we observe the state-of-the-art implementation of this approach, cvxpylayers [3], struggles
with problems containing more than 100 variables (see Section 5).

Another approach, proposed for deep equilibrium models in [6] and adapted to constrained optimization layers in
[13, 17] is to re-formulate (12) as a fixed point problem:

Find xΘ such that xΘ = PC (xΘ − α∇x fΘ(xΘ; d)) . (15)

Then apply the implicit function theorem to obtain an explicit formula for ∂xΘ/∂Θ. However, the cost of
computing PC can be prohibitive, see the discussion in Section 4.

Finally, many works use a perturbation-based approach to define a continuously differentiable proxy for the
solution to the unregularized optimization problem (4), which we rewrite here as

g(w) = min
x∈C
w⊤x, (16)

omitting the dependence of w on d and Θ for notational clarity. For example, [41] define a piecewise-affine
interpolant to g(w). The gradients of gλ(w) are strikingly easy to compute, requiring just one additional solve
of (16) with perturbed cost w ′. We implement this approach as BB-net in Section 5. In [10], a stochastic
perturbation is considered:

gε(w) = EZ

[
min
x∈C
(w + εZ)⊤ x

]
, (17)

which is analogous to Nesterov-Spokoiny smoothing [36] in zeroth-order optimization. By Danskin’s theorem
[20], the gradients of gε(w) are also easy to compute:

∇wgε(w) = EZ

[
argmin
x∈C

(w + εZ)⊤ x

]
≈
1

m

m∑
i=1

argmin
x∈C

(w + εZi)
⊤ x. (18)

We implement this approach as PertOpt-net in Section 5. The advantage of such approaches is they easily
wrap around existing combinatorial solvers (e.g. Dijkstra for the shortest path problem), as only repeated solves
of (16) are required for computing gradients. The disadvantage is that such solvers are usually run on CPU.
Thus, data needs to be shuttled between CPU and GPU when training. In addition, we observe the gradient
approximations computed through such means are quite coarse, and so unsuitable for fine-grained tasks (see
Section 5).

4 DYS-Net

We now introduce our proposed model, DYS-net. We use this term to refer to the model and the custom
backpropagation procedure. Fixing an architecture for wΘ, and an input d , DYS-net computes an approximation
to xΘ(d) in a way that is easy to backpropagate through:

DYS-net(d ; Θ) ≈ xΘ ≜ argmin
x∈C

fΘ(x ; γ, d). (19)

DYS-net may be trained using either the regret loss or the argmin loss.
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The Forward Pass As we wish to compute xΘ and ∂xΘ/∂Θ for high dimensional settings (i.e. n where xΘ ∈ Rn

and n is large), we eschew second-order methods (e.g. Newton’s method) in favor of first-order methods such
as projected gradient descent (PGD). With PGD, a sequence {xk} of estimates of xΘ are computed so that

xΘ = lim
k→∞

xk , where xk+1 = PC
(
xk − α∇x f (xk ; γ, d)

)
for all k ∈ N, (20)

where PC is the orthogonal projection3 onto C. This approach works for simple sets C for which there exists an
explicit form of PC , e.g. when C is the probability simplex [19, 22, 33]. However, for general polytopes C no such
form exists, thereby requiring a second iterative procedure, run at each iteration k, to compute PC(xk). We
adapt the architecture incorporating Davis-Yin splitting (DYS) [21] proposed in [30] to avoid computation of PC
in the forward pass. (Also, see [40, 53] where this technique is used for conventional optimization). To this end,
we rewrite C as an intersection:

C = {x : Ax = b and x ≥ 0} = {x : Ax = b}︸ ︷︷ ︸
≜ C1

∩{x : x ≥ 0}︸ ︷︷ ︸
≜ C2

= C1 ∩ C2. (21)

While PC is hard to compute, both PC1 and PC2 can be computed cheaply (once an SVD is computed for A). We
verify this via the following lemma (included for completeness, as the two results are already known).

Lemma 1. If C1 ≜ {x : Ax = b}, C2 ≜ {x : x ≥ 0} and A is full-rank, then

1. PC1(z) = z −A†(Az −b), where A† = V Σ−1U⊤ and UΣV ⊤ is the compact singular value decomposition
of A such that U and V have orthonormal columns and Σ is invertible;

2. PC2(z) = ReLU(z) ≜ max{0, z}, where the max is applied element-wise.

Further splitting of C1 can yield even simpler projections, see [30]. The following theorem formulates (12) as a
fixed point problem involving only PC1 and PC2 , not PC.

Theorem 2. Let C1, C2 be as in (21), and suppose fΘ(x ; γ, d) = wΘ(d)⊤x +
γ
2∥x∥

2
2 for any neural network

wΘ(d). For all α > 0, define

TΘ(z) ≜ z−PC2(z) + PC1 (2 · PC2(z)−z−α [wΘ(d) + γPC2(z)])) (22a)

= z−PC2(z) + PC1 ((2− αγ) · PC2(z)− z − αwΘ(d)) . (22b)

Then xΘ solves (12) if and only if

xΘ = PC2(zΘ), for some zΘ ∈ {z : z = TΘ(z)}. (23)

Proof. First note ∇x fΘ(xΘ; γ, d) = wΘ(d) + γx , and so ∇x fΘ(xΘ; γ, d) is γ-Lipschitz continuous. Furthermore,
∇x fΘ is 1/γ-cocoercive by the Baillon-Haddad theorem [7, 8]. Because fΘ(xΘ; γ, d) is strongly convex, xΘ is
unique and is characterized by the first order optimality condition:

∇x fΘ(xΘ; d)⊤ (x − xΘ) ≥ 0 for all x ∈ C. (24)

The claim then follows from standard results on Davis-Yin splitting, see [30, Theorem 3.2] or [44].

The simplified expression for TΘ given in (22b) will be useful later. The next result shows that the simple fixed
point iteration method, applied with TΘ, will converge for small enough α (see [43, Sec 2.2.1] for a proof).

Corollary 3. With notation and assumptions as in Theorem 2, take α ∈ (0, 2/γ), if the sequence {zk} is defined
by zk+1 = TΘ(zk), then xk ≜ PC2(z

k)→ xΘ with rate O(1/k).

The Backward Pass Upon attempting to differentiate both sides of the fixed-point condition (23):

dzΘ
dΘ
=
∂TΘ
∂Θ
+
∂TΘ
∂z

dzΘ
dΘ

=⇒ JΘ(zΘ)
dzΘ
dΘ
=
∂TΘ
∂Θ
, where JΘ(z) = I −

∂TΘ
∂z
. (25)

We notice two immediate problems: (i) TΘ is not everywhere differentiable with respect to z , as PC2 is not; (ii) if
TΘ were a contraction (i.e. Lipschitz in z with constant less than unity), then JΘ would be invertible. However,

3For a set A ⊆ Rn, the projection is defined by PA(x) ≜ argminz∈A ∥z − x∥.
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this is not necessarily the case. Thus, it is not clear a priori that (25) can be solved for dzΘ/dΘ. Our key result
(Theorem 7 below) is to provide reasonable conditions under which JΘ(zΘ) is invertible.

Assuming these issues can be resolved, one may compute the gradient of the loss using the chain rule:

dℓ

dΘ
=
dℓ

dx

dxΘ
dΘ
=
dℓ

dx

(
dPC1
dz

dzΘ
dΘ

)
=
dℓ

dx

dPC1
dz
J −1Θ

∂TΘ
∂Θ

(26)

This approach requires solving a linear system with JΘ which becomes particularly expensive when n is large.
Instead, we use the recently introduced Jacobian-free Backpropagation (JFB) in which the Jacobian JΘ is
replaced with the identity matrix. This leads to an approximation of the true gradient dℓ/dΘ using

pΘ =

[
∂ℓ

∂x

dPC1
dz

∂TΘ
∂Θ

]
(x,z)=(xΘ,zΘ)

. (27)

We show (27) is a valid descent direction by resolving the two problems highlighted above. We begin by rigorously
deriving a formula for ∂TΘ/∂z . Recall the following generalization of the Jacobian to non-smooth operators due
to Clarke [18].

Definition 4. For any locally Lipshitz F : Rn → Rn let DF denote the set upon which F is differentiable. The
Clarke Jacobian of F is the set-valued function defined as

∂F (z̄) =

{
dF
dz

∣∣
z=z̄

if z̄ ∈ DF
Con

{
limz ′→z̄ :z ′∈DF

dF
dz

∣∣
z=z ′

}
if z̄ /∈ DF

(28)

Where Con {} denotes the convex hull of a set.

The Clarke Jacobian of PC2 is easily computable, see Lemma 10. Define the (multi-valued) functions

c(α) ≜ ∂max(0, α) =


1 if α > 0

0 if α < 0

[0, 1] if α = 0

and c̃(α) =

{
1 if α > 0

0 if α ≤ 0
(29)

Then

∂PC2(z̄) =

[
d

dz
ReLU(z)

]
z=z

= diag(c(z)), (30)

where c is applied element-wise. If zi ̸= 0 for all i then ∂PC2 is a singleton. If one or more zi = 0 then ∂PC2 is
multi-valued, so we choose the element of ∂PC2 with 0 in the (i , i) position for every zi = 0. Abusing notation
slightly, we write

dPC2
dz

∣∣∣∣
z=z̄

= diag(c̃(z)) ∈ ∂PC2(z̄)

This aligns with the default rule for assigning a sub-gradient to ReLU used in the popular machine learning
libraries TensorFlow[1], PyTorch [39] and JAX [16], and has been observed to yield networks which are more
stable to train than other choices [11].

Given the above convention, we can compute ∂TΘ/∂z . Astonishingly, ∂TΘ/∂z may be expressed using only
orthogonal projections to hyperplanes. Throughout, we let ei ∈ Rn be the one-hot vector with 1 in the i-th
position and zeros elsewhere, and a⊤i be the i-th row of A.

Theorem 5. If H1 ≜ Null(A) with A full-rank, H2,z ≜ Span (ei : zi > 0) and zi ̸= 0 for all i ∈ [n], then

∂TΘ
∂z

∣∣∣∣
z=ẑ

= PH⊥1 PH⊥2,ẑ + (1− αγ) · PH1PH2,ẑ , for all ẑ ∈ Rn. (31)

To show JFB is applicable, it suffices to verify ∥∂TΘ/∂z∥ < 1 when evaluated at the fixed point zΘ. The
characterization in Theorem 5 enables us to show this inequality holds when xΘ satisfies a commonly-used
“niceness” condition, which we formalize as follows.

Definition 6 (LICQ condition, specialized to our case). Let xΘ denote the solution to (12). Let A(xΘ) ⊆
{1, . . . , n} denote the set of active positivity constraints:

A(xΘ) ≜ {i : [xΘ]i = 0}. (32)
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Algorithm 1 DYS-Net Training with JFB

1: Input: A and b defining C, fΘ
2: Initialize Θ0 randomly
3: Compute SVD of A for PC1 formula
4: for m = 0, . . . ,M − 1 do
5: Compute xK = PC1(z

K) ≈ xΘm using iteration zk+1 = TΘm(zk).
6: Compute pΘ(xK) ≈ pΘ(xΘ) using (27).
7: Θm+1 = Θm − ηpΘm(xK).
8: end for

The point xΘ satisfies the Linear Independence Constraint Qualification (LICQ) condition if the vectors

{a1, . . . , am} ∪ {ei : i ∈ A(xΘ)} (33)

are linearly independent.

Theorem 7. If the LICQ condition holds at xΘ, A is full-rank and α ∈ (0, 2/γ), then ∥∂TΘ/∂z∥z=zΘ < 1.

The significance of Theorem 7 is outlined by the following theorem, which states use of JFB is justified with
DYS-Net even though TΘ is not (necessarily) a contraction.

Corollary 8. If TΘ is continuously differentiable with respect Θ at zΘ, the assumptions in Theorem 7 hold and
(∂TΘ/∂Θ)

⊤(∂TΘ/∂Θ) has condition number sufficiently small, then

pΘ ≜
d

dΘ
[ℓ(TΘ(z ; d)]z=zΘ (34)

is a descent direction for ℓ with respect to Θ.

Thus, using pΘ instead of dℓ/dΘ guarantees a decrease in ℓ(Θ). We summarize this training procedure as
Algorithm 1. Theorem 7 also provides a sufficient condition for the application of numerous other gradient
approximation techniques, for example replacing JΘ by (a truncation of) the Neumann series [27, 34](

I −
∂TΘ
∂z

)−1
= I +

∂TΘ
∂z
+
1

2

(
∂TΘ
∂z

)2
+
1

3!

(
∂TΘ
∂z

)3
+ . . . . (35)

5 Numerical Experiments

5.1 Knapsack Problem

In the (0–1, single) knapsack problem, we are presented with a container (i.e. a knapsack) of size c and I items,
of sizes s1, . . . , sI and values w1(d), . . . , wI(d). The goal is to select the subset of maximum value that fits in
the container, i.e. to solve:

x⋆ = argmax
x∈X

w(d)⊤x where X = {x ∈ {0, 1}I : s⊤x ≤ c} (36)

In the (0-1) k-knapsack problem we imagine the container having various notions of “size” (i.e. length, volume,
weight limit) and hence a k-tuple of capacities c ∈ Rk . Correspondingly, the items each have a k-tuple of sizes
s1, . . . , sI ∈ Rk . We aim to select a subset of maximum value, amongst all subsets satisfying the k capacity
constraints:

x⋆ = argmax
x∈X

w(d)⊤x where X = {x ∈ {0, 1}I : Sx ≤ c} and S =
[
s1 · · · sk

]
∈ Rk×I (37)

In Appendix B we discuss how to transform X into the canonical form discussed in Section 2.

Data Generation We generate two parallel data sets using the benchmarking suite PyEOPO [47], Dw =
{(di , wi ≈ w(di)}Ni=1 and Dx = {(di , x⋆i ≈ x⋆(di))}Ni=1. In both cases the di are sampled from a five-dimensional
multivariate Gaussian distribution with mean 0 and covariance I, see Appendix C for further details. We vary I,
the number of items, in increments of 5 from 20 to 60.
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grid size number of variables network size
5-by-5 40 500

10-by-10 180 2040
20-by-20 760 8420
30-by-30 1740 19200
50-by-50 4900 53960

100-by-100 19800 217860

Table 1: Number of variables (i.e. number of edges) per grid size for the shortest path problem described
in Section 5. Third column: number of parameters for all three models used: DYS-Net, cvxpyayers and
PertOpt-Net. For BB-Net, we found a latent dimension that is 20-times larger than the aforementioned three to
be more effective.

Models and Training We consider five approaches. All use the same neural network architecture wΘ(d),
thus they only differ in the way the x⋆Θ and ∂xΘ/∂Θ are computed. The four benchmarks we consider are:
the Perturbed Optimization approach of [10] (PertOpt-net) as well as the variant proposed in [10] using the
Fenchel-Young loss (PertOpt-FY-net); the Blackbox Backpropagation strategy of [41] (BB-net); and the SPO+
loss proposed by [23] (SPO+-net). All four are implemented using PyEPO. We train PertOpt-net, BB-net,
and DYS-net on the Dx dataset using the argmin loss (8). We train the aforementioned approaches as well as
SPO+-net and PertOpt-FY-net on the Dw dataset using the regret/ SPO loss4 (6). Note that SPO+-net and
PertOpt-FY-net are incompatible with data in the (di , x⋆i ) format.

For wΘ we use a three-layer fully connected neural network with leaky ReLU activation functions. We also add
drop-out during training to the output layer—empirically, we find that without drop-out wΘ tends to output a
sparse approximation to w supported on a feasible set of items, and so does not generalize well. At test time,
we solve (37) exactly, given wΘ(d), using a Gurobi-based combinatorial solver included in PyEPO.

Training We use a validation set for model selection as we observe that, for all models, the best loss is seldom
achieved at the final iteration. We train for a maximum of 25 epochs or 20 minutes, whichever comes first. We
average over five trials per model and problem size (i.e. number of items).

Results The results are displayed in Figure 2. Given the Dw dataset, SPO+-net achieves the lowest (i.e.
best) regret, and trains second-fastest. This corroborates the findings of [47]. However, given the Dx dataset,
DYS-net appears to offer the best balance between low regret and rapid training.

5.2 Shortest Path Prediction

The shortest path between two vertices in a graph G = (V, E) can be found by:

x⋆ = argmin
x∈X

w(d)⊤x where X = {x ∈ {0, 1}|E| : Ex = b} (38)

where E is the vertex-edge adjacency matrix, b encodes the initial and terminal vertices, and w(d) ∈ R|E| is a
vector encoding (d-dependent) edge lengths; see Appendix for further details. In this experiment we focus on
the case where G is the k × k grid graph.

Data Generation We generate datasets D = {(d, x⋆(d)} for k ∈ {5, 10, 20, 30, 50, 100} where d is sampled
uniformly at random from [0, 1]5, the true edge weights are computed as w(d) = Wd for fixed W ∈ R|E|×5, and
x⋆(d) is computed given w(d) using Dijkstra’s algorithm. Further details are presented in Appendix C.

Models and Training We test four approaches: PertOpt-net, BB-net, an approach using cvxpylayers [2]
to solve the (regularized) LP CVX-net, and the proposed DYS-net. We use the exact same neural network
architecture for wΘ(d) for DYS-net, PertOpt-net, and Cvx-net; a two layer fully connected neural network

4Except we use the SPO+ loss for SPO+-net
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Figure 2: Results for the contextual knapsack problem. Top Row: Training with the Dx dataset. Bottom
Row: Training with the Dw dataset. DYS-net trains (at least) one order of magnitude faster than benchmark
approaches. Given the Dw dataset, DYS-net achieves a regret which compares poorly with other approaches.
However, given the Dx dataset DYS-net performs well, achieving a regret only fractionally worse than that
achieved by the best approach (SPO+-net) given the Dw dataset.

with leaky ReLU activation functions. For BB-net we use a larger network by making the latent dimension
20-times larger than that of the first three as we found this more effective. Network sizes can be seen in Table 1.

Predicted Path Accuracy %

0 25 50 75 100
epochs

0

20

40

60

80

100

DYS
CVX
PertOpt
BB

Figure 4: Accuracy (in percentage) of predicted paths
on 5-by-5 grid during training.

We tuned the hyperparameters for each architecture
to the best of our ability on the smallest problem (5-
by-5 grid graphs) and then used these hyperparameter
values for all other graph sizes. We train all approaches
for 100 epochs total on each problem using the argmin
loss (8).

Results The results are displayed in Figure 3. While
CVX-net and PertOpt-net achieve low regret for
small grids, DYS-net model achieves a low regret for
all grids. In addition to training faster, DYS-net can
also be trained for much larger problems, e.g., 100-
by-100 grids, as shown in Figure 3. We found that
CVX-net could not handle grids larger than 30-by-30,
i.e. , problems with more than 1740 variables5 (see
Table 1). Importantly, PertOpt-net takes close to
a week to train for the 100-by-100 problem, whereas

5This is to be expected, as discussed in in [2, 5]
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Figure 3: a) Test MSE loss (left), b) training time in minutes (middle), and c) regret values (right) vs. gridsize
for three methods: DYS-Net, cvxpylayers[3], PertOpt [10], and Blackbox-Backprop (BB) [49]. The grid sizes
are chosen to be 5-by-5, 10-by-10, 20-by-20, 30-by-30, 50-by-50, and 100-by-100. All three algorithms are
shown up to gridsize 30-by-30, however, CVX is unable to load or run problems with gridsize over 30. Indeed,
this is because the optimization variable x is too large. Dimensions of the variables can be found in Table 1.
PertOpt [10] can be trained on the larger problems but takes a substantial amount to train.

DYS-net takes about a day (see right Figure 3b). On the other hand, the training speed of BB-net is comparable
to that of DYS-net, but does not lead to competitive accuracy as shown in Figure 3a). Interpreting the outputs of
DYS-net and CVX-net as (unnormalized) probabilities over the grid, one can use a greedy decoder to determine
the most probable path from top-left to bottom-right. For small grids, e.g. 5-by-5, this most probable path
coincides exactly with the true path for most d (see Fig. 4). For larger grids, we find there are often slight
differences between the predicted and true paths. This is not surprising, as the number of possible paths grows
exponentially with k .

6 Conclusions

This work presents a new method for Predict-and-Optimize capable of scaling to truly large problems. We
call this approach DYS-net, as the core ingredient is Davis-Yin splitting. Theoretically, we show that the
gradient approximation computed in the backward pass of DYS-net is indeed a descent direction, thus advancing
the current understanding of Jacobian-free backpropagation[14, 26]. We have delineated two variants of the
Predict-and-Optimize problem, distinguished by whether available data is of the form (d, w(d)) or (d, x⋆(d)),
a distinction that appears to be lacking in the literature. For (d, x⋆(d)) data, our experiments show DYS-Net
leads to comparable (if not lower) regret with substantially lower training times, as compared to state-of-the-art
benchmarks. For (d, w(d)) data DYS-net performs poorly as compared to SPO+-net. This is not surprising as
the regret/ SPO loss used in training is known to be challenging to work with [23]. Future work will focus on
formulating a more performant loss function for this setting. Finally, as the dimensions of problems increase, this
problem becomes more akin to using deep learning for optimal control problem [37, 38], where the aim is to find
an optimal path that minimizes an energy functional. Future work may investigate these connections.
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A Proofs

For the reader’s convenience we restate each result given in the main text before proving it. We being with two
auxiliary lemmas relating the Jacobian matrices to projections onto linear subspaces.

Lemma 9. If C1 ≜ {x : Ax = b}, for full-rank A ∈ Rm×n, b ∈ Rn with m < n, and H1 ≜ Null(A) then

∂PC1
∂z
= PH1 , for all z ∈ Rn. (39)

Proof. Let A = UΣV ⊤ denote the reduced SVD of A, and note that as A ∈ Rm×n with m < n we have
U ∈ Rm×m,Σ ∈ Rm×m and V ∈ Rn×m. Differentiating the formula for PC1 given in Lemma 1 yields

∂PC1
∂z
= I − A†A, (40)

where A† ≜ V Σ−1U⊤. Note
A†A =

(
V Σ−1U⊤

) (
UΣV ⊤

)
= V V ⊤, (41)

which is the orthogonal projection onto Range(V ) = Range(A⊤). It follows that I − A†A is the orthogonal
projection on to Range(A⊤)⊥ = Null(A).

Lemma 10. Define the multi-valued function

c(α) ≜ ∂max(0, α) =


1 if α > 0

0 if α < 0

[0, 1] if α = 0

(42)

and, for z ∈ Rn, define H2,z ≜ Span(ei : zi > 0). Then

∂PC2(z̄) =

[
d

dz
ReLU(z)

]
z=z

= diag(c(z)), (43)

and adopting the convention for choosing an element of ∂PC2(z̄) stated in the main text:

dPC2
dz

∣∣∣∣
z=z̄

= diag(c̃(z)) = PH2,z . (44)

Proof. First, suppose z ∈ Rn satisfies zi ̸= 0, for all i ∈ [n], i.e. z is a smooth point of PC2 . Note

d[ReLU(zi)]

dz
= 1 if i = j and zi > 0 and

d[ReLU(zi)]

dz
= 0 if i ̸= j or zi < 0. (45)

Thus, the Jacobian matrix is diagonal with a 1 in the (i , i)-th position whenever zi > 0 and 0 otherwise, i.e.
dPC2
dz

∣∣∣
z=z̄
= diag(c(z)). Now suppose zi = 0 for one i . For all z̄ ∈ Rn with zi < 0, the Jacobian dPC2

dz

∣∣∣
z=z̄

is well-defined and has a 0 in the (i , i)-th position, while for z̄ ∈ Rn with zi > 0, the Jacobian dPC2
dz

∣∣∣
z=z̄

is

well-defined and has a 1 in the (i , i)-th position. Taking the convex hull yields the interval [0, 1] in the (i , i)-th
position, as claimed. The case where zi = 0 for multiple i is similar.

Consequently, the product of dPC2dz

∣∣∣
z=z̄

and any vector v ∈ Rn equals v if and only if v ∈ Span(ei : zi > 0). This

shows the linear operator is idempotent with fixed point set H2,z , i.e. it is the projection operator PH2,z .

Theorem 5. If H1 ≜ Null(A) with A full-rank, H2,z ≜ Span (ei : zi > 0) and zi ̸= 0 for all i ∈ [n], then

∂TΘ
∂z

∣∣∣∣
z=ẑ

= PH⊥1 PH⊥2,ẑ + (1− αγ) · PH1PH2,ẑ , for all ẑ ∈ Rn. (46)

Proof. Differentiating the expression for TΘ in (22b) with respect to z yields

∂TΘ
∂z

∣∣∣∣
z=ẑ

= I −
dPC2
dz

∣∣∣∣
z=ẑ

+
dPC1
dz

∣∣∣∣
z=y(ẑ)

[
(2− αγ) ·

dPC2
dz

∣∣∣∣
z=ẑ

− I
]

(47a)

= I − PH2,ẑ + PH1
(
(2− αγ)PH2,ẑ − I

)
, for all ẑ ∈ Rn, (47b)
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where, for notational brevity, we set y(ẑ) ≜ (2− αγ) · PC2(ẑ) − ẑ − αwΘ(d) in the first line and the second
line follows from Lemmas 9 and 10. Repeatedly using the fact, for any subspace H ⊂ Rn, PH⊥ = I − PH, the
derivative ∂TΘ/∂z can be further rewritten:

∂TΘ
∂z

∣∣∣∣
z=ẑ

= I − PH2,ẑ + (2− αγ) · PH1PH2,ẑ − PH1 (48a)

= PH⊥2,ẑ + (2− αγ) · PH1
(
I − PH⊥2,ẑ

)
− PH1 (48b)

= PH⊥2,ẑ + PH1 + (1− αγ) · PH1 − PH1PH⊥2,ẑ − (1− αγ) · PH1PH⊥2,ẑ − PH1 (48c)

= (I − PH1)PH⊤2,ẑ + (1− αγ) · PH1(I − PH⊥2,ẑ ) (48d)

= PH⊥1 PH⊥2,ẑ + (1− αγ) · PH1PH2,ẑ , for all ẑ ∈ Rn, (48e)

completing the proof.

We use the following lemma to prove Theorem 7.

Lemma 11. If the LICQ condition holds at xΘ, then H⊥1 ∩H⊥2,zΘ = {0}.

Proof. We first rewrite H⊥1 and H⊥2,zΘ . The subspace H⊥2,zΘ is spanned by all non-positive coordinates of zΘ. By
(23), [xΘ]i = max{0, [zΘ]i}, and so i ∈ A(xΘ) if and only if [zΘ]i ≤ 0. It follows that

H⊥2,zΘ ≜ Span{ei : [zΘ]i ≤ 0} = Span{ei : i ∈ A(xΘ)} = Span{ei1 , . . . , eiℓ}, (49)

where we enumerate A(xΘ) via A(xΘ) = {i1, . . . , iℓ}. On the other hand, H⊥1 = Range(A⊤) = Span(a1, . . . , am)
where a⊤i denotes the i-th row of A.

Let v ∈ H⊥1 ∩ H⊥2,zΘ be given. Since v ∈ H⊥1 , there are scalars α1, . . . , αℓ such that v = α1ei1 + · · · + αℓeiℓ .
Similarly, since v ∈ H⊥2,zΘ , there are scalars β1, . . . , βm such that v = β1a1 + · · ·+ βmam. Hence

0 = v − v =
(
α1ei1 + . . .+ αℓeiℓ

)
−
(
β1a1 + . . .+ βmam

)
. (50)

By the LICQ condition, {ei1 , . . . , eiℓ} ∪ {a1, . . . , am} is a linearly independent set of vectors; hence α1 = . . . =
αℓ = β1 = . . . = βm = 0 and, thus, v = 0. Since v was arbitrarily chosen in H⊥1 ∩H⊥2,zΘ , the result follows.

Theorem 7. If the LICQ condition holds at xΘ, A is full-rank and α ∈ (0, 2/γ), then ∥∂TΘ/∂z∥z=zΘ < 1.

Proof. By Lemma 11, the LICQ condition implies H⊥1 ∩ H⊥2,zΘ = {0}. This implies that either (i) the first
principal angle τ between these two subspaces is nonzero, and so the cosine of this angle is less than unity, i.e.

1 > cos(τ) ≜ max
u∈H⊥1 :∥u∥=1

max
v∈H⊥2,z :∥v∥=1

⟨u, v⟩, (51)

or (ii) (at least) one of H⊥1 ,H⊥2,zΘ is the trivial vector space {0}. In either case, let w ∈ Rn be given. By
Theorem 5, in case (ii)[

∂TΘ
∂z
w

]
z=zΘ

= PH⊥1 PH⊥2,zΘ
w + (1− αγ) · PH1PH2,zΘw = (1− αγ) · PH1PH2,zΘw (52)

implying that ∥∥∥∥∂TΘ∂z w
∥∥∥∥
z=zΘ

= (1− αγ)
∥∥∥PH1PH2,zΘw∥∥∥ ≤ (1− αγ)∥w∥, (53)

where the inequality follows as projection operators are firmly nonexpansive. In case (i), write w = w1 + w2,
where w1 ∈ H2,zΘ and w2 ∈ H⊥2,zΘ . Appealing to Theorem 5 again[

∂TΘ
∂z
w

]
z=zΘ

= PH⊥1 PH⊥2,zΘ
w + (1− αγ) · PH1PH2,zΘw = PH⊥1 w2 + (1− αγ) · PH1w1. (54)

Pythagoras’ theorem may be applied to deduce, together with the fact PH⊥1 w2 and PH1w1 are orthogonal,∥∥∥∥∂TΘ∂z w
∥∥∥∥2
z=zΘ

=
∥∥∥PH⊥1 w2∥∥∥2 + (1− αγ)2 · ∥PH1w1∥2 . (55)
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Since w2 ∈ H⊥2,zΘ , the angle condition (51) implies∥∥∥PH⊥1 w2∥∥∥2 = ⟨PH⊥1 w2, PH⊥1 w2⟩ = ⟨w2, PH⊥1 PH⊥1 w2⟩ = ⟨w2, PH⊥1 w2⟩ ≤ cos(τ) · ∥w2∥2, (56)

where the third equality holds since orthogonal linear projections are symmetric and idempotent. Because
projections are non-expansive and PH2,zΘ is linear,∥∥∥PH2,zΘw1∥∥∥2 = ∥∥∥PH2,zΘw1 − PH2,zΘ0∥∥∥2 ≤ ∥w1 − 0∥2 = ∥w1∥2. (57)

Combining (55), (56) and (57) reveals∥∥∥∥∂TΘ∂z w
∥∥∥∥2
z=zΘ

≤ cos(τ) · ∥w2∥2 + (1− αγ)2∥w1∥2 (58a)

≤ max{cos(τ), (1− αγ)2} ·
(
∥w1∥2 + ∥w2∥2

)
(58b)

= max{cos(τ), (1− αγ)2} · ∥w∥2, (58c)

noting the final equality holds since w1 and w2 are orthogonal. Because (58) holds for arbitrarily chosen w ∈ Rn,∥∥∥∥∂TΘ∂z
∥∥∥∥
z=zΘ

≜ sup

{∥∥∥∥∂TΘ∂z w
∥∥∥∥
z=zΘ

: ∥w∥ = 1

}
≤

√
max{cos(τ), (1− αγ)2} < 1, (59)

where the final inequality holds by (51) and the fact α ∈ (0, 2/γ) implies 1− αγ ∈ (−1, 1), as desired.

Corollary 8. If TΘ is continuously differentiable with respect Θ at zΘ, the assumptions in Theorem 7 hold and
(∂TΘ/∂Θ)

⊤(∂TΘ/∂Θ) has condition number sufficiently small, then

pΘ ≜
d

dΘ
[ℓ(TΘ(z ; d)]z=zΘ (60)

is a descent direction for ℓ with respect to Θ.

Proof. From the proof of Theorem 7 we see that TΘ is contractive with constant Γ =
√
max{cos(τ), (1− αγ)2}

and so the main theorem of [26], guaranteeing pΘ is a descent direction, as long as the condition number of
(∂TΘ/∂Θ)

⊤(∂TΘ/∂Θ) is less than 1/Γ.

Remark 12. Similar guarantees, albeit with less restrictive assumptions on ∂TΘ/∂Θ, can be deduced from the
results of the recent work [14].

B Derivation for Canonical Form of Knapsack Problem

For completeness, we explain how to transform the k-knapsack problem into the canonical form (12), and how
to derive the standardized representation of the constraint polytope C. Recall that the k-knapsack problem, as
originally stated, is

x⋆ = argmax
x∈X

w⊤x where X = {x ∈ {0, 1}ℓ : Sx ≤ c} and S =
[
s1 · · · sℓ

]
∈ Rk×ℓ (61)

We introduce slack variables y1, . . . , yk so that the inequality constraint Sx ≤ c becomes

−Sx + c ≥ 0 =⇒ −Sx + c = y and y ≥ 0

=⇒
[
S Ik

] [x
y

]
= c

We relax the binary constraint xi ∈ {0, 1} to 0 ≤ xi ≤ 1. We add additional slack variables z1, . . . , zℓ to account
for the upper bound:

1− xi ≥ 0 =⇒ 1− xi = zi and zi ≥ 0 =⇒
[
Iℓ×ℓ 0ℓ×k Iℓ×ℓ

] xy
z

 = 1 (62)
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Putting this together, define

A =

[
−S −Ik×k 0k×ℓ
Iℓ×ℓ 0ℓ×k Iℓ×ℓ

]
∈ R(k+ℓ)×(2ℓ+k) and b =

[
−c
1ℓ

]
∈ Rk+ℓ (63)

Finally, redefine x =
[
x y z

]⊤
and w =

[
−w 0k 0ℓ

]
(where we’re using −w to switch the argmax to an

argmin) and obtain:

x⋆ = argmin
x∈Conv(X )

w⊤(d)x + γ∥x∥22 where Conv(X ) = {x : Ax = b and x ≥ 0} (64)

C Experimental Details

C.1 Additional Data Details for Knapsack Problem

As mentioned, we use PyEPO [47] to generate the training data. Specifically, d ∈ R5 is sampled from the
multivariate Gaussian distribution with mean 0 and covariance I. Then, B ∈ Rn×5 is sampled where each
Bi j = +1 with probability 0.5 and −1 with probability 0.5. The associated cost vector w(d) is computed as

[w(d)]i =

[
1

3.5deg

(
1√
5
(Bd)i + 3

)deg
+ 1

]
· ϵi j

where deg = 4 and ϵi j is sampled uniformly from the interval [0.5, 1.5].

C.2 Additional Training Details for Knapsack Problem

For all models we use an initial learning rate of 10−3 and a scheduler that reduces the learning rate whenever the
validation loss plateaus. We also used weight decay with a parameter of 5× 10−4. All networks were trained on
a MacBook Pro with Apple M2 Max Chip and 32 GB of (combined) memory.

C.3 Additional Model Details for Shortest Path

Our implementation of PertOpt-net used a PyTorch implementation6 of the original TensorFlow code7 associated
to the paper [10]. We train PertOpt-net using the argmin loss (see (11)), also referred to as MSE loss in the
text. We do so for consistency with the other two models tested. We experimented with various hyperparameter
settings for 5-by-5 grids and found setting the number of samples equal to 3, the temperature (i.e. ε) to 1 and
using Gumbel noise to work best, so we used these values for all other experiments.

C.4 Additional Training Details for Shortest Path

To train DYS-net and cvxpylayers, we use an initial learning rate of 10−2 and use a scheduler that reduces
whenever the loss plateaus - we found this to perform the best for these two models. For PertOpt-net, however,
we found that using a fixed learning rate of 10−2 performed the best. For BB-net, we performed a logarithmic
grid-search on the learning rate between 10−1 to 10−4 and found that 10−3 performed best - we also attempted
adaptive learning rate schemes such as reducing learning rates on plateau but did not obtain improved performance.
All networks were trained using a AMD Threadripper Pro 3955WX: 16 cores, 3.90 GHz, 64 MB cache, PCIe 4.0
CPU and an NVIDIA RTX A6000 GPU.

D Additional Experimental Results

In Figure 5, we show the test loss and training time per epoch for all three architectures: DYS-net, CVX-net,
and PertOpt-net for 10-by-10, 20-by-20, and 30-by-30 grids. In terms of MSE loss, CVX-net and DYS-net
lead to comparable performance. In the second row of Figure 5, we observe the benefits of combining the
three-operator splitting with JFB [26]; in particular, DYS-Net trains much faster. Figure 6 shows some randomly
selected outputs for the three architectures once fully trained.

6See code at github.com/tuero/perturbations-differential-pytorch
7See code at github.com/google-research/google-research/tree/master/perturbations
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Figure 5: Comparison of of DYS-Net, cvxpylayers [2], PertOptNet [10], and Blackbox Backpropagation-net
(BB-Net) [41] for three different grid sizes: 10 × 10 (first column), 20 × 20 (second column), and 30 × 30
(third column). The first row shows the MSE loss vs. epochs of the testing dataset. The second row shows the
training time vs. epochs.
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Figure 6: True paths (column 1), paths predicted by DYS-net (column 2), CVX-net (column 3), and PertOpt-net
(column 4). Samples are taken from different grid sizes: 10-by-10 (row 1), 20-by-20 (row 2), and 30-by-30 (row
3).
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